Resources
Useful Resources
You can download the ISLR-Python PDF by clicking the link below:
Useful Snippets
def QuickView(df):
'''
# Quick Data View Function to show columns, nulls,type and missing percentage in a dataframe",
'''
# Number of Null values for each column
= pd.DataFrame(data=df.isnull().sum(), columns=['Nnull'])
Nnull
# Number of Unique Values for each column\
= pd.DataFrame(data=df.nunique(), columns=['Nunique'])
Nunique 'Total Rows'] = df.shape[0]
Nunique[
# Dtype for each column
= pd.DataFrame(data=df.dtypes, columns=['Dtype'])
Dtype
# MissingRate for each column
= pd.DataFrame(data = df.isnull().sum()/df.shape[0], columns=['MissingRate'])
MissingRate
#Sample
= pd.DataFrame(data= df.sample().sum(), columns = ['Sample'])
SampleValue
# Descriptive stats for numerical columns
= pd.DataFrame(data = df.describe().T)
Des
# Add more here, if you want to have quickview before you access to the further analysis\n",
#Concat all columns you want
= pd.concat([Nnull,Nunique,MissingRate, Dtype, SampleValue], axis = 1)
DataQuickview # Object volumns don't have a description
= DataQuickview.replace(np.NaN,'na')
DataQuickview return pd.DataFrame(DataQuickview)